
Virtual Network Embedding with Substrate Support
for Parallelization

Sheng Zhang†, Jie Wu§, and Sanglu Lu†
†State Key Lab. for Novel Software Technology, Nanjing University, China
§Department of Computer and Information Sciences, Temple University, USA
†zhangsheng@dislab.nju.edu.cn, sanglu@nju.edu.cn, §jiewu@temple.edu

Abstract—Network virtualization has been the focus of intense
research interest and is a promising approach to overcome the
ossification of the Internet. A major challenge with network
virtualization is virtual network embedding, which deals with the
efficient embedding of virtual networks with resource constraints
into a substrate network. Many research results have been
reported regarding this problem. However, there hasn’t been
any focus on virtual network embedding with substrate support
for parallelization, i.e., the substrate network supports parallel
computation and allows a virtual node to be mapped into multiple
substrate nodes. This paper is the first attempt at gaining a better
understanding on how parallelization benefits embedding. We
present a formal problem description and propose two algorithms
that capitalize parallelism. Several extensions are developed to
complement the proposed algorithms. From experimental results,
the effectiveness and usefulness of the algorithms and extensions
are confirmed.

I. Introduction

From global commerce to communications, from national
defense to entertainment–just as it seems, the Internet has
been extremely successful and ubiquitous. However, the multi-
provider nature of the Internet and the end-to-end design
of Internet Protocol (IP) are now creating hurdles for its
further evolution [1, 2]. Recently, network virtualization has
received much attention as a promising approach to overcome
the current ossification of the Internet [3, 4], and it has
been investigated in a variety of prestigious projects, such as
CABO [4], PlanetLab [5], and VINI [6].

In a network virtualization environment, an infrastructure
provider (InP) maintains a substrate network (SN), which
is composed of substrate nodes and links, while a service
provider (SP) purchases slices of substrate resources (e.g.,
CPU, bandwidth, memory) from the InP and then creates
his own customized virtual network (VN) to offer value-
added service (e.g., Voice over IP, content distribution) to
end users. In doing so, customized network protocols can
be easily deployed without requiring universal agreements
between competing stakeholders. Furthermore, this decoupling
of traditional Internet service providers brings about a layered
service architecture and provides great flexibility and diversity.

The fundamental challenge that network virtualization faces
is efficiently utilizing substrate resources, that is, how to
embed multiple virtual networks with resource constraints into
a substrate network so as to efficiently utilize the substrate
resource. Known as the Virtual Network Embedding (VNE)

problem, it is proven to be NP-complete by reducing the
multiway separator problem to this problem [7].

A significant amount of research [8–20] has investigated
techniques for the VNE problem. Some work [9–11] re-
stricted the problem space. Multi-path routing and dynamic
migration support was envisioned in [12]. Attention was paid
to opportunistic resource sharing in [19, 20]. Some other
research [14, 16, 20] focused on topology-aware embedding.

However, there hasn’t been any focus on virtual network
embedding with substrate support for parallelization. More
specifically, we make the substrate network more supportive
of embedding, in the sense that the substrate network supports
parallel computation and allows a virtual node to be mapped to
multiple substrate nodes. Upon that, multiple substrate nodes
can parallel accomplish the computation that the virtual node
is dedicated to. Parallelization not only enables the substrate
network to efficiently share its resources among virtual net-
works, but also makes virtual networks more reliable, as
computation can quickly migrate to other substrate nodes in
case a substrate node crashes. Since network virtualization is
still in its infancy [12], we believe it is important to explore
how we can design the SN to best serve its goals.

In this paper, we study the virtual network embedding prob-
lem with parallelization support and propose two algorithms,
ProactiveP and LazyP, that intelligently perform efficient
embedding. The contributions of this paper are threefold.

1) To the best of our knowledge, this is the first attempt
that envisions substrate parallelization support in virtual
network embedding. We present a formal description of
the problem and propose two embedding algorithms that
leverage parallelization.

2) We provide three extensions to further complement our
algorithms. The first deals with the additional CPU and
bandwidth consumption due to parallelization and com-
munication; the second one considers situations where the
maximum possible speedup [21] is specified by service
providers, and the last one discusses expiration time.

3) Simulation results demonstrate that the proposed algo-
rithms achieve a remarkably high acceptance ratio over
time. In addition, the impacts of various extensions are
also investigated in our simulations.

The remainder of this paper is organized as follows. Sec-
tion II introduces the notations and problem formulation.
Then, in Section III, we propose two algorithms. We also

VN request G
v1

A

B

C

H

D

F

E

substrate network

12

10

1010

10

10

a

d1

a

b c

6 6

6

VN request G
v2

G
10

1010

ed

99
7

10

10

12

12

121212

12

12
b1
c

e1
b2

d2 e210 10

Fig. 1. An illustration of virtual network embedding with substrate support
for parallelization. For virtual network Gv

1, the master mapping is {a→ A, c→
G, b→ H}, the slave mapping is {a→ Ø, c→ Ø, b→ {F}}, and the link map-
ping is {(ac) → {AG}, (cb) → {GH}, (ba) → {HB, BA}}. Ratio(b) = {0.6, 0.4}.
For virtual network Gv

2, the master mapping is {d → C, e → E}, the slave
mapping is {d → {B}, e → {F}}, and the link mapping is {(de) → {CD,DE}}.
Ratio(d) = {2/3, 1/3}, and Ratio(e) = {2/3, 1/3}.

provide three extensions in Section IV. Simulation results
are presented in Section V, where the performance of our
algorithms are compared with respect to acceptance ratio and
node/link utilization. We go over some existing related work
in Section VI. Finally, Section VII concludes the paper.

II. Preliminary

In this section, we first introduce the notations used in this
paper, and then we present the problem formulation.

A. Notations

The main constraints we consider in this paper are CPU
and bandwidth, which is the typical case in almost all of the
related literature on virtual network embedding so far. The
notation system in this paper is similar to that in [10, 12, 20].
The principle behind these notations is that superscript “s” (or
“v”) indicates a substrate (or virtual) network. Commonly, we
model a substrate (or virtual) network as a undirected weighted
graph; vertices represent nodes and edges represent links. Each
vertex is associated with a CPU capacity/constraint, while each
edge is associated with a bandwidth capacity/constraint.

Definition 1: (Substrate Network). A substrate network is
Gs = (N s, E s,C s, Bs), where N s and E s are the sets of substrate
nodes and links, respectively. C s is the set of CPU attributes,
and Bs is the set of bandwidth attributes.

Let RCs(ns) and RBs(es) be the residual CPU of substrate
node ns and the residual bandwidth of substrate link es,
respectively. Let Ps(ns

i , n
s
j) denote the set of loop-free paths

between endpoints ns
i and ns

j in Gs. Similarly, we have:
Definition 2: (Virtual Network). A virtual network is Gv =

(Nv, Ev,Cv, Bv), where Nv is the set of virtual nodes, and Ev

is the set of virtual links. Cv is the set of CPU constraints,
and Bv is the set of bandwidth constraints.

Fig. 1 shows an example of these notations. the corre-
sponding number near each vertex (or edge) is the CPU (or
bandwidth) capacity/constraint.

Traditional virtual network embedding is defined as a map-
ping of Gv to a subset of Gs such that each virtual node is
mapped onto exactly one substrate node and each virtual link

is mapped onto a substrate path between its corresponding
endpoints. However, with substrate support for parallelization,
one virtual node can be mapped onto multiple substrate nodes.
It is then reasonable to assume that these multiple substrate
nodes, which one virtual node is mapped onto, should be
close to each other so as to mitigate the effect of network
latency. In this paper, we represent this “closeness” by forcing
these multiple substrate nodes to form a star topology, i.e., all
slave nodes are one-hop away from the master node. To put
it formally:

Definition 3: (Virtual Network Embedding, parallelization
version). Virtual network embedding from Gv to a subset of
Gs is composed of three components: master mapping Mms,
slave mapping Msl, and link mapping Ml.

Definition 4: (Master Mapping and Slave Mapping). The
master mapping Mms maps a virtual node nv to a substrate
node, denoted by Mms(nv), and the slave mapping Msl

maps a virtual node nv to a subset of the neighbors of
Mms(nv), denoted by Msl(nv), such that ∀nv,mv ∈ Nv: (i)
Mms(nv) ∪ Msl(nv) = Mms(mv) ∪ Msl(mv) iff. mv = nv, and
(ii) RCs(Mms(nv)) + RCs(Msl(nv)) ≥ Cv(nv).

Definition 5: (Link Mapping). The link mapping Ml maps
a virtual link ev = (nv,mv) to a substrate loop-free path,
denoted by Ml(nv,mv), such that ∀ev ∈ Ev

i : (i) Ml(nv,mv) ∈
PS (Mms(nv),Mms(mv)), and (ii) RBs(Ml(nv,mv)) ≥ Bv(ev).

We also associate each virtual node with a vector Ratio(nv)
to indicate how to distribute Cv(nv) among the master and slave
nodes. Fig. 1 shows two embedding examples. “Ratio(b) =
{0.6, 0.4}” indicates that node b will occupy 6 units of CPU
in H and 4 units of CPU in F.

It is worth mentioning that parallelization brings about ad-
ditional CPU and bandwidth costs. To concentrate on the main
problem, we defer the discussion on this issue to Section IV-A.

B. Problem Formulation

Virtual network embedding requests that are submitted by
SPs arrive and depart over time. When a virtual network is
successfully embedded, its owner, i.e., an SP, has to pay rent
proportional to his requested resources. Thus, the revenue,
R(Gv), of embedding a virtual network can be defined as
(following the definitions in previous work [10, 12, 20]):

R(Gv) = ωc ·
∑

nv∈Nv
Cv(nv) + ωb ·

∑
ev∈Ev

Bv(ev) (1)

where ωc and ωb are the weights for CPU and bandwidth,
respectively. From the InP’s point of view, a natural objective
is to increase his revenue. Since the amount of resources
owned by the InP is limited in a relatively long period of time,
the InP should optimize the embedding of virtual networks to
maximize its revenue.

To this end, virtual networks should be properly and effi-
ciently deployed on top of a substrate network, for which many
algorithms have been proposed. However, little attention has
been given to embedding with parallelization support. In the
next section, we will present two algorithms, ProactiveP and
LazyP, for the parallelization version of embedding.

A

B

C

H

D

F

E

residual substrate network

2

10

44

10

3

VN request G
v3

G

gf

1010
3

3

4

2

5

6126

6

9
4 10

reject

without

parallelization

g

f1 f2
accept

parallelization

Fig. 2. Motivation of parallelization. The left part shows the residual substrate
network of Fig. 1 after embedding two VN requests, Gv

1 and Gv
2.

III. Two algorithms: ProactiveP and LazyP

In this section, we first argue that the substrate network
should support parallelization, and then we present two algo-
rithms, ProactiveP and LazyP.

A. Motivation of Parallelization

To motivate substrate support for parallelization, consider
the example shown in Fig. 2, where the left part shows the
residual substrate network, which has already accepted two
virtual network requests, Gv

1 and Gv
2. Now, suppose a new

VN request Gv
3 arrives. If parallelization is not supported,

this request would be rejected, as there is only one substrate
node that has more than 10 units of available CPU resources.
However, the request can be accepted in the presence of
parallelization, as Fig. 2 shows.

Parallelization makes it possible for a substrate network to
utilize every small piece of available resource, so as to accept
more VN requests. Furthermore, it provides reliability and fast
recovery. For example, when there is one master (or slave)
node that crashes, the SN can direct the computation to other
slave nodes simply by changing the Ratio.

Although the model used in this paper is simple, we wish
to provide some insights on the design of better substrate
infrastructures. In the following subsections, we introduce
two heuristic embedding algorithms. One is the Proactive
Parallelization (ProactiveP) algorithm, which divides compu-
tation among neighbors of the master node regardless of the
residual resources of the master node, while the other is the
Lazy Parallelization (LazyP) algorithm, which only distributes
computation among the neighbors when there are not enough
resources in the master node.

B. ProactiveP

ProactiveP employs a greedy approach to deal with master
mapping, which plays the leading role in VN embedding. The
slave nodes are chosen from the neighbors of each master
node, and the link mapping utilizes Dijkstra [22] to find the
shortest path that meets the requirements. ProactiveP is shown
in Alg. 1; it consists of four phases.

In the initialization phase (lines 3-4), every substrate node is
set to be unused, and every node updates RCs

nei(n
s), denoting

the summation of the residual resources of the neighbors

(including ns itself) of ns. In the master mapping phase (lines
5-12), all virtual nodes are sorted and placed in a queue in the
decreasing order of Cv(nv); we then map each virtual node to
the unused substrate node with the largest RC s

nei(n
s). If there

is not enough resources (line 9-10), the embedding request
is rejected; otherwise, this substrate node is marked to be
used. In the slave mapping phase (lines 13-20), no matter
how many residual units of CPU that the master node has,
ProactiveP divides the CPU requirement into pieces that are
proportional to the residual units of CPU in neighbors of
the master node. In the link mapping phase (lines 22-28),
each virtual link is mapped to the shortest substrate path that
satisfies the bandwidth requirement between the corresponding
endpoints. If there is no such path, this request is rejected.

Algorithm 1 Proactive Parallelization (ProactiveP)
1: while true do
2: //initialization phase
3: ∀ns ∈ N s, unused(ns)← 1 and update RCs

nei(n
s)

4: wait until a VN request, say Gv, arrives
5: //master mapping phase
6: Q← sorted virtual nodes in decreasing Cv(nv)
7: for i = 1 to Qs.length do
8: Mms(Q[i])← argmax(RC s

nei(n
s) · unused(ns))

9: if RCs
nei(Mms(Q[i])) < Cv(Q[i]) then

10: Rejection occurs
11: end if
12: unused(Mms(Q[i]))← 0
13: //slave mapping phase
14: Ratio(Q[i])[Mms(Q[i])]← RCs(Mms(Q[i]))

RCs
nei(Mms(Q[i]))

15: for all ms is a neighbor of Mms(Q[i]) do
16: unused(ms)← 0
17: Msl(Q[i])←Msl(Q[i]) ∪ {ms}
18: Ratio(Q[i])[ms]← RCs(ms)

RCs
nei(Mms(Q[i]))

19: end for
20: end for
21: //link mapping phase
22: for all ev = (nv,mv) ∈ Ev do
23: Ps′ ← {p|p ∈ Ps(Mms(nv),Mms(mv)),RBs(p) ≥

Bv(ev)}
24: if Ps′ == ∅ then
25: Rejection occurs
26: end if
27: Ml(ev)← argminp∈Ps′(hop(p)) (Dijkstra)
28: end for
29: end while

C. LazyP

LazyP shares most parts with ProactiveP, except the slave
mapping phase, shown in Alg. 2. As the algorithm name
indicates, LazyP applies parallelization only when the residual
units of CPU in the master node for a virtual node is not
sufficient. More specifically, when there is a need for par-
allelization (lines 3-9), LazyP iteratively chooses the unused
node that has the most residual units of CPU among the

neighbors of the master node for virtual node Q[i] (line 4),
and tries to satisfy the CPU demand of Q[i] (line 7) until Q[i]
is successfully embedded.

Algorithm 2 The slave mapping phase of LazyP
1: Ratio(Q[i])[Mms(Q[i])]
← RCs(Mms(Q[i]))<Cv(Q[i])?RCs(Mms(Q[i])):Cv(Q[i])

Cv(Q[i])
2: remainder ← Cv(Q[i]) − RCs(Mms(Q[i]))
3: while remainder > 0 do
4: gs ← argmax(RC s(ms) · unused(ms)), where ms is a

neighbor of Mms(Q[i])
5: unused(gs)← 0
6: Msl(Q[i])←Msl(Q[i]) ∪ {gs}
7: Ratio(Q[i])[gs]← RCs(gs)<remainder?RCs(gs):remainder

Cv(Q[i])
8: remainder ← remainder − RC s(Mms(Q[i]))
9: end while

IV. Extensions

This section presents three extensions to complement the
proposed embedding algorithms.

A. Additional CPU and Bandwidth Consumption

Ideally, parallelization causes no additional CPU and band-
width consumption but meanwhile achieves the same effect as
the scenario without parallelization. For example, in Fig. 1,
virtual node b in Gv

1 requires 10 units of CPU, and it is
mapped to H and F. In an ideal case, the sum of units of
CPU allocated in H and F is still 10, and there is no additional
bandwidth consumption along HF. However, in fact, splitting
computation, merging results, exchanging messages, and other
issues will cost additional CPU and bandwidth resources. To
capture this, we propose the following techniques.

For additional CPU consumption, we define the penalty
factor p f : we allocate p f times as many CPU units as a virtual
node demands. In the aforementioned example, if p f = 1.2,
then 12 units of CPU should be allocated to b in H and F.
For additional bandwidth consumption, we assume that it is a
constant, say Z. That is, an additional Z units of bandwidth
should be allocated between each pair of slave and master
nodes. By using the simulations in Section V, we will show
how p f and Z affect the performance of ProactiveP and
LazyP, respectively.

B. The Maximum Possible Speedup

We would regret not mentioning that, it is the very com-
putation determined by a virtual network, not our proposed
embedding algorithms, that is parallelized. The speedup [21]
refers to how much a parallel algorithm is faster than a
sequential algorithm. Suppose that the maximum possible
speedup of the computation in a virtual network is 5, that
is, even if we allocate more than five substrate nodes for a
virtual node in this virtual network, we still cannot achieve a
shorter computation time than just allocating five nodes for that
virtual node, which means that it is wasteful, with regard to
substrate resources, to allocate more than five substrate nodes

for any virtual node in this virtual network. In the proposed
algorithms, if a service provider specifies the speedup to be
speedup, then we just restrict the allowable number of slave
nodes to speedup−1. Later, we will see the impact of speedup.

C. Expiration Time

VN requests arrive and leave over time. If our embedding
algorithms immediately reject a VN request due to the shortage
of available resources, then the InP definitely loses a customer.
Therefore, to further improve the embedding performance and
provide flexibility, we adopt a similar approach to [12]: for
each VN request, its owner can specify an expiration time
to indicate the amount of time that the embedding request is
willing to wait. The embedding algorithm will try to process
requests that do not expire at regular intervals.

V. Simulation

In this section, we evaluate the performance of our algo-
rithms and see the impacts of the extensions.

A. Simulation Setup

As network virtualization is still an open field, the settings
in this paper are similar to [10, 12–14, 20]. In order to see the
impact of the substrate network topology on the performance
of the proposed algorithms, we use two graph models.

ArpaNet [23] graph: it contains 20 nodes and 32 links (we
insert additional links to increase its connectivity).

Erdős-Rényi model G(n, p): it contains n nodes, and each
pair of nodes is connected with probability p. In our simu-
lations, we set n = 20 and p = 0.4 to be compatible with
ArpaNet.

In each graph model, the CPU capacity at substrate nodes
and the bandwidth capacity at substrate links are generated
randomly from the range [50, 100]. The number of virtual
nodes in each virtual network follows a uniform distribution
between 2 and 10. Each pair of virtual nodes is connected with
probability 0.5. The lifetime of each virtual network follows
an exponential distribution with an average of 10 minutes.
The arrivals of embedding requests are modeled as a Poisson
process with an average rate of five requests per minute.

We use the following performance metrics for comparison.
(i) acceptance ratio, which is the ratio of the number of
accepted virtual network requests to all requests; (ii) node
utilization, which is the ratio of the amount of occupied CPU
resources to overall CPU resources in the substrate network;
(iii) link utilization, which is the ratio of the amount of
occupied bandwidth resources to overall bandwidth resources
in the substrate network.

B. Simulation Results: Comparison of Algorithms

In this subsection, we do not consider the extensions in
Section IV and focus on the comparison of the following
algorithms. (i) Random (without parallelization): it randomly
chooses a substrate node for each virtual node, and then
employs Dijkstra to find a substrate path for each virtual link;
(ii) Greedy (without parallelization): it greedily chooses an

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Time

Random
Greedy
LazyP

ProactiveP

(a) On ArpaNet graph

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Time

Random
Greedy
LazyP

ProactiveP

(b) On Erdős-Rényi model G(20, 0.4)

Fig. 3. Acceptance Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Node Utilization Ratios

Random
Greedy
LazyP

ProactiveP

(a) On ArpaNet graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Node Utilization Ratios

Random
Greedy
LazyP

ProactiveP

(b) On Erdős-Rényi model G(20, 0.4)

Fig. 4. CDF of node utilization ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Link Utilzation Ratios

Random
Greedy
LazyP

ProactiveP

(a) On ArpaNet graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Link Utilization Ratios

Random
Greedy
LazyP

ProactiveP

(b) On Erdős-Rényi model G(20, 0.4)

Fig. 5. CDF of link utilization ratio

unused substrate node with the most available units of CPU
for each virtual node in a sorted queue, and then does the
same as Random; (iii) LazyP; and (iv) ProactiveP.

Fig. 3 shows the comparison of acceptance ratio between
them. In general, LazyP and ProactiveP achieve a much higher
acceptance ratio than Random and Greedy on both of the
two graph models. We notice that every algorithm performs
better on G(20, 0.4) than on ArpaNet. The main reason is that
G(20, 0.4) has more links than ArpaNet on average.

Figs. 4 and 5 illustrate the comparison of cumulative distri-
bution function (CDF) of the node and link utilization ratios,
respectively. We note that, (i) LazyP and ProactiveP allocate
more resources than the others, which is in accordance with
Fig. 3; (ii) since G(20, 0.4) has more resources than ArpaNet,
the node/link utilization ratio of the former is smaller than that
of the latter on average; and (iii) the link utilization ratio is
smaller than node on average. The reason could be that there
are relatively abundant links connecting nodes.

C. Simulation Results: Effects of Extensions

We are also interested in evaluating the impacts of the penal-
ty factor p f , additional bandwidth consumption Z, maximum

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Time

Greedy
LazyP(pf=1.0)
LazyP(pf=1.5)
LazyP(pf=2.0)

ProactiveP(pf=1.0)
ProactiveP(pf=1.5)
ProactiveP(pf=2.0)

(a) The impact of penalty f actor

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Time

Greedy
LazyP(Z=1.0)
LazyP(Z=2.0)
LazyP(Z=3.0)

ProactiveP(Z=1.0)
ProactiveP(Z=2.0)
ProactiveP(Z=3.0)

(b) The impact of Z

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Time

Greedy
LazyP(speedup=2.0)
LazyP(speedup=4.0)
LazyP(speedup=6.0)

ProactiveP(speedup=2.0)
ProactiveP(speedup=4.0)
ProactiveP(speedup=6.0)

(c) The impact of speedup

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Time

Greedy
LazyP(expiration=1.0m)
LazyP(expiration=2.0m)
LazyP(expiration=3.0m)

ProactiveP(expiration=1.0m)
ProactiveP(expiration=2.0m)
ProactiveP(expiration=3.0m)

(d) The impact of expiration time

Fig. 6. Impact evaluation on ArpaNet graph

possible speedup, and expiration time. The default setting for
them is p f = 1,Z = 1, speedup = 20, expiration = 0. For each
of the four parameters, we ran experiments with one parameter
of varying values while keeping the other three parameters to
their default values. Figs. 6 and 7 show the numerical results
on two substrate models, respectively. Some key observations
are summarized as follows.

(1) The penalty factor has a greater influence on ProactiveP
than LazyP. In Figs. 6a and 7a, the curves related to LazyP
are closer to each other than those of ProactiveP. The main
reason may be that ProactiveP trends to divide the CPU re-
quirement into as many pieces as possible and makes substrate
nodes more load-balanced. This is obviously not beneficial to
embedding requests with large penalty factors.

(2) A larger Z makes algorithms perform worse in G(20,0.4)
compared to in ArpaNet. This can be noted in Figs. 6b and
7b. As G(20, 0.4) has more links than ArpaNet, a larger Z
consumes more bandwidth resources.

(3) Parameter speedup doesn’t significantly affect LazyP
and ProactiveP on both graph models. Figs. 6c and 7c show
the results of speedup = 2, 4, and 6. Even when speedup is
restricted to 2, LazyP and ProactiveP still perform better than
the other algorithms to a great extent.

(4) Retry does improve the acceptance ratio. Figs. 6d and 7d
show that the proposed algorithms with retry opportunities
enable the substrate to accept more embedding requests.

VI. RelatedWork

A large number of mapping algorithms for virtual networks
have been proposed in the past [8–20]. These algorithms gave
good inspiration to the design of our algorithm.

Simulated annealing was introduced to cope with the NP-
completeness of the VNE problem in [8, 18]. There, a
candidate mapping solution is generated randomly, and the
algorithms improve the candidate solution through iterative

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Time

Greedy
LazyP(pf=1.0)
LazyP(pf=1.5)
LazyP(pf=2.0)

ProactiveP(pf=1.0)
ProactiveP(pf=1.5)
ProactiveP(pf=2.0)

(a) The impact of penalty f actor

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Time

Greedy
LazyP(Z=1.0)
LazyP(Z=2.0)
LazyP(Z=3.0)

ProactiveP(Z=1.0)
ProactiveP(Z=2.0)
ProactiveP(Z=3.0)

(b) The impact of Z

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Time

Greedy
LazyP(speedup=2.0)
LazyP(speedup=4.0)
LazyP(speedup=6.0)

ProactiveP(speedup=2.0)
ProactiveP(speedup=4.0)
ProactiveP(speedup=6.0)

(c) The impact of speedup

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Time

Greedy
LazyP(expiration=1.0m)
LazyP(expiration=2.0m)
LazyP(expiration=3.0m)

ProactiveP(expiration=1.0m)
ProactiveP(expiration=2.0m)
ProactiveP(expiration=3.0m)

(d) The impact of expiration time

Fig. 7. Impact evaluation on Erdős-Rényi model G(20, 0.4)

adjustments. In [8], only the bandwidth constraint was con-
sidered, and a substrate node was not allowed to be mapped
to more than one virtual node. The tradeoff between results
accuracy and running time was investigated in [18].

The study of embedding with the assumption of unlimited
substrate resources was performed in [9] and [11]. The former
focused on load balancing, while the latter attempted to
minimize the embedding cost of a single virtual network with
a backbone-star topology.

Substrate support for path splitting was envisioned in [12],
where the authors also discussed migration for online requests.
The authors in [10] added additional location constraints and
employed linear programming and deterministic/randomized
rounding techniques to achieve better coordination between
node and link mapping. A subgraph isomorphism detection-
based embedding algorithm was proposed in [13]. The sce-
nario of mapping virtual networks between multiple substrate
networks, i.e., inter-domain mapping, was examined in [15].

Topology was incorporated into embedding in research [14,
16, 20]. Two metrics, Critical Index and Popularity Index,
were introduced to differentiate between substrate nodes and
links in [16]. Inspired by PageRank [24], Markov chain-based
algorithms were developed in [14, 20] to compute the ranking
of substrate nodes, which further facilitates VN embedding.

Due to workload’s fluctuation, resources purchased by ser-
vice providers are not adequately used for most of the time.
Thus, the authors in [19, 20] proposed opportunistic resource
sharing-based mapping algorithms, where substrate resources
are shared among multiple virtual networks opportunistically.

VII. Conclusions

This paper considers the virtual network embedding prob-
lem and envisions substrate support for parallelization, which
provides reliability, fast recovery, and efficient resource utiliza-
tion. We present a formal problem description and develop two

algorithms, ProactiveP and LazyP. Extensions that deal with
additional resource consumption, speedup, and expiration time
are proposed. Simulation results confirmed the performance of
the proposed algorithms. In future work, we intend to look in
detail into parallelization-based embedding schemes, and we
will attempt to combine path splitting with parallelization.

Acknowledgments
This work is supported in part by the National NSF of China

under Grant No. 61073028 and No. 61021062; Key Project of Jiangsu
Research Program under Grant No.BE2010179; Jiangsu Natural
Science Foundation under Grant No. BK2011510; the National 973
Basic Research Program of China under Grant No. 2009CB320705
and No. 2011CB302800; College graduate research and innovation
project of Jiangsu under Grant No. CXZZ12 0055; US NSF grants
ECCS 1128209, CNS 1065444, CCF 1028167, CNS 0948184, and
CCF 0830289.

References
[1] J. Turner and D. Taylor, “Diversifying the Internet,” in IEEE GLOBE-

COM 2005.
[2] N. Chowdhury and R. Boutaba, “A survey of network virtualization,”

Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.
[3] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the

Internet impasse through virtualization,” Computer, vol. 38, 2005.
[4] N. Feamster, L.-X. Gao, and J. Rexford, “How to lease the Internet in

your spare time,” ACM SIGCOMM CCR, vol. 37, 2007.
[5] PlanetLab, “http://www.planet-lab.org/.”
[6] VINI, “http://www.vini-veritas.net/.”
[7] D. G. Andersen, “Theoretical approaches to node assignment,” Dec.

2002, unpublished Manuscript.
[8] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed

mapping problem,” ACM SIGCOMM CCR, vol. 33, no. 2, 2003.
[9] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network

resources to virtual network components,” in IEEE INFOCOM 2006.
[10] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network embed-

ding with coordinated node and link mapping,” in INFOCOM 2009.
[11] J. Lu and J. Turner, “Efficient mapping of virtual networks onto a shared

substrate,” Washington University, Tech. Rep. WUCSE-2006-35, 2006.
[12] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network

embedding: substrate support for path splitting and migration,” ACM
SIGCOMM CCR, vol. 38.

[13] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in VISA 2009.

[14] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM CCR, vol. 41, pp. 38–47, April 2011.

[15] M. Chowdhury, F. Samuel, and R. Boutaba, “Polyvine: policy-based
virtual network embedding across multiple domains,” in VISA 2010.

[16] N. Butt, N. Chowdhury, and R. Boutaba, “Topology-awareness and
reoptimization mechanism for virtual network embedding,” in IFIP
Networking 2010.

[17] I. Houidi, W. Louati, D. Zeghlache, P. Papadimitriou, and L. Mathy,
“Adaptive virtual network provisioning,” in ACM SIGCOMM VISA 2010.

[18] S. Zhang, Z. Qian, S. Guo, and S. Lu, “FELL: A flexible virtual network
embedding algorithm with guaranteed load balancing,” in ICC 2011.

[19] S. Zhang, Z. Qian, B. Tang, J. Wu, and S. Lu, “Opportunistic bandwidth
sharing for virtual network mapping,” in IEEE Globecom 2011.

[20] S. Zhang, Z. Qian, J. Wu, and S. Lu, “An opportunistic resource sharing
and topology-aware mapping framework for virtual networks,” in IEEE
INFOCOM 2012.

[21] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in AFIPS 1967 (Spring).

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. The MIT Press.

[23] ArpaNet, “http://en.wikipedia.org/wiki/arpanet.”
[24] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation

ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999.

